

Northern University, Nowshera

Spring 2024

Inheritance
Week # 11 - Lecture 21- 22

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

2

Learning Objectives:

1. Assignment Solution

2. Inheritance (recap)

3. is-a relationship

4. protected keyword

5. method overriding

6. types of inheritance

a. single inheritance

b. multi-level inheritance

c. Hierarchical inheritance

7. Rules of inheritance

1. Assignment Solution

Q#1: Write code for the following classes.

Animal Class: Animal class has attributes: String eats and int no of legs. Write constructors to

set attributes eat and no of legs. Write a function getNoOfLegs() and getEats() to return

required attributes.

Cat Class: Write another class cat having attribute color of type string that inherits animal class.

Write appropriate constructors and a function for getColor() to return color property of cat. Use

the concept of calling constructors of parent class in child class.

Example main () is given below. Complete the code by considering the given main().

public class AnimalInheritanceTest {

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

3

 public static void main(String[] args) {

 Cat cat = new Cat("milk", 4, "black");

 System.out.println("Cat eats " + cat.getEats());

 System.out.println("Cat has " + cat.getNoOfLegs() + " legs.");

 System.out.println("Cat color is " + cat.getColor());

 }

}

Assignment Solution:

class Animal
{

 private String eats;
 private int noOfLegs;
 public Animal()
 {

 }
 public Animal(String e, int no)
 {
 this.eats=e;
 this.noOfLegs=no;
 }
 public int getNoOfLegs()
 {
 return noOfLegs;
 }
 public String getEats()
 {
 return eats;
 }
}
class Cat extends Animal
{
 private String color;
 public Cat()
 {
 super();
 color=null;
 }
 public Cat(String e, int no, String col)
 {
 super(e,no);
 this.color=col;
 }
 public String getColor()
 {
 return color;
 }

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

4

}
class AnimalInheritanceTest {
 public static void main(String[] args) {
 Cat cat = new Cat("milk", 4, "black");
 System.out.println("Cat eats " + cat.getEats());
 System.out.println("Cat has " + cat.getNoOfLegs() + " legs.");
 System.out.println("Cat color is " + cat.getColor());
 }
}

2. Inheritance Revision

In below example of inheritance, class Bicycle is a base class, class MountainBike is a derived

class which extends Bicycle class and class Test is a driver class to run program.

Example 1: A Bicycle example

//Java program to illustrate the
// concept of inheritance
// base class
class Bicycle {
 // the Bicycle class has two fields
 public int gear;
 public int speed;

 // the Bicycle class has one constructor
 public Bicycle(int gear, int speed) {
 this.gear = gear;
 this.speed = speed;
 }

 // the Bicycle class has three methods
 public void applyBrake(int decrement) {
 speed -= decrement;
 }

 public void speedUp(int increment) {
 speed += increment;
 }

 // toString() method to print info of Bicycle
 public String toString() {
 return ("No of gears are " + gear
 + "\n"

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

5

 + "speed of bicycle is " + speed);
 }
}

// derived class
class MountainBike extends Bicycle {

 // the MountainBike subclass adds one more field
 public int seatHeight;

 // the MountainBike subclass has one constructor
 public MountainBike(int gear, int speed,
 int startHeight) {
 // invoking base-class(Bicycle) constructor

 super(gear, speed);
 seatHeight = startHeight;
 }

 // the MountainBike subclass adds one more method
 public void setHeight(int newValue) {
 seatHeight = newValue;
 }

 // overriding toString() method
 // of Bicycle to print more info
 @Override
 public String toString() {
 return (super.toString() +
 "\nseat height is " + seatHeight);
 }

}
// driver class
public class Test {
 public static void main(String args[]) {

 MountainBike mb = new MountainBike(3, 100, 25);
 System.out.println(mb.toString());

 }
}

OUTPUT

 No of gears are 3

 speed of bicycle is 100

 seat height is 25

 Brake applied

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

6

 No of gears are 3

 speed of bicycle is 80

 seat height is 25

In above program, when an object of MountainBike class is created, a copy of the all methods

and fields of the superclass acquire memory in this object. That is why, by using the object of

the subclass we can also access the members of a superclass.

Please note that during inheritance only object of subclass is created, not the superclass. For

more, refer Java Object Creation of Inherited Class.

Illustrative image of the program:

3. is-a relationship

Inheritance is an is-a relationship. We use inheritance only if an is-a relationship is present

between the two classes. Here are some examples:

https://media.geeksforgeeks.org/wp-content/uploads/inheritence1.png

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

7

 A car is a vehicle.

 Orange is a fruit.

 A surgeon is a doctor.

 A dog is an animal.

Example 2: is- a relationship

class Animal {

 public void eat() {

 System.out.println("I can eat");

 }

 public void sleep() {

 System.out.println("I can sleep");

 }

}

class Dog extends Animal {

 public void bark() {

 System.out.println("I can bark");

 }

}

class Main {

 public static void main(String[] args) {

 Dog dog1 = new Dog();

 dog1.eat();

 dog1.sleep();

 dog1.bark();

 }

}

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

8

OUTPUT

I can eat

I can sleep

I can bark

Here, we have inherited a subclass Dog from superclass Animal. The Dog class inherits the

methods eat() and sleep() from the Animal class.

Hence, objects of the Dog class can access the members of both the Dog class and

the Animal class.

4. protected Keyword

We learned about private and public access modifiers in previous lectures.

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

9

 private members can be accessed only within the class

 public members can be accessed from anywhere

You can also assign methods and fields protected. Protected members are accessible

 from within the class

 within its subclasses

within the same package

Here's a summary from where access modifiers can be accessed.

 Class Package subclass World

public Yes Yes Yes Yes

private Yes No No No

protected Yes Yes Yes No

Example 3: protected Keyword

class Animal {

 protected String type;

 private String color;

 public void eat() {

 System.out.println("I can eat");

 }

 public void sleep() {

 System.out.println("I can sleep");

 }

 public String getColor(){

 return color;

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

10

 }

 public void setColor(String col){

 color = col;

 }

}

class Dog extends Animal {

 public void displayInfo(String c){

 System.out.println("I am a " + type);

 System.out.println("My color is " + c);

 }

 public void bark() {

 System.out.println("I can bark");

 }

}

class Main {

 public static void main(String[] args) {

 Dog dog1 = new Dog();

 dog1.eat();

 dog1.sleep();

 dog1.bark();

 dog1.type = "mammal";

 dog1.setColor("black");

 dog1.displayInfo(dog1.getColor());

 }

}

OUTPUT

I can eat

I can sleep

I can bark

I am a mammal

My color is black

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

11

Here, the type field inside the Animal class is protected. We have accessed this field from

the Main class using

dog1.type = "mammal";

It is possible because both the Animal and Main classes are in the same package (same file).

5. Java Method overriding

From the above examples, we know that objects of a subclass can also access methods of its

super class. What happens if the same method is defined in both the superclass and subclass?

Well, in that case, the method in the subclass overrides the method in the superclass. For

example:

Example 4: Method overriding Example

class Animal {

 protected String type = "animal";

 public void eat() {

 System.out.println("I can eat");

 }

 public void sleep() {

 System.out.println("I can sleep");

 }

}

class Dog extends Animal {

 public void eat() {

 System.out.println("I eat dog food");

 }

 public void bark() {

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

12

 System.out.println("I can bark");

 }

}

class Main {

 public static void main(String[] args) {

 Dog dog1 = new Dog();

 dog1.eat();

 dog1.sleep();

 dog1.bark();

 }

}

OUTPUT

I eat dog food

I can sleep

I can bark

 Here, eat() is present in both the superclass Animal and subclass Dog. We created an

object dog1 of the subclass Dog.

 When we call eat() using the dog1 object, the method inside the Dog is called, and the same

method of the superclass is not called. This is called method overriding.

If we need to call the eat() method of Animal from its subclasses, we use the super keyword.

Example 5: use of Super Keyword

class Dog extends Animal {

 public Dog(){

 super();

 System.out.println("I am a dog");

 }

 public void eat() {

 super.eat();

 System.out.println("I eat dog food");

 }

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

13

 public void bark() {

 System.out.println("I can bark");

 }

}

class Main {

 public static void main(String[] args) {

 Dog dog1 = new Dog();

 dog1.eat();

 dog1.bark();

 }

}

OUTPUT

I am an Animal

I am a dog

I can eat

I eat dog food

I can bark

Here, we have used the super keyword to call the constructor using super(). Also, we have

called the eat() method of Animal superclass using super.eat().

Note the difference in the use of super while calling constructor and method.

6. Types of inheritance in java

On the basis of class, there can be three types of inheritance in java:

 single,

 multilevel and

 hierarchical.

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

14

Note: In java programming, multiple and hybrid inheritance is supported through interface

only. We will learn about interfaces later.

Single Inheritance Example

When a class inherits another class, it is known as a single inheritance. In the example given

below, Dog class inherits the Animal class, so there is the single inheritance.

Example 6: Single inheritance

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

15

class Animal {
 void eat() {
 System.out.println("Eating...");
 }
}

class Dog extends Animal {
 void bark() {
 System.out.println(Barking...");
 }
}

class TestInheritance {
 public static void main(String args[]) {
 Dog d = new Dog();
 d.bark();
 d.eat();
 }
}

OUTPUT

Barking...

Eating...

Multilevel Inheritance Example

When there is a chain of inheritance, it is known as multilevel inheritance. As you can see in the

example given below, BabyDog class inherits the Dog class which again inherits the Animal

class, so there is a multilevel inheritance.

Example 7: Multilevel inheritance Example

class Animal {
 void eat() {
 System.out.println("Eating...");
 }
}

class Dog extends Animal {
 void bark() {
 System.out.println("Barking...");
 }
}

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

16

class BabyDog extends Dog {
 void weep() {
 System.out.println("Weeping...");
 }
}

class TestInheritance2 {
 public static void main(String args[]) {
 BabyDog d = new BabyDog();
 d.weep();
 d.bark();
 d.eat();
 }
}

OUTPUT

Weeping...

Barking...

Eating...

Hierarchical Inheritance Example

When two or more classes inherits a single class, it is known as hierarchical inheritance. In the

example given below, Dog and Cat classes inherits the Animal class, so there is hierarchical

inheritance.

Example 8: Hierarchical Inheritance

class Animal {
 void eat() {
 System.out.println("Eating...");
 }
}

class Dog extends Animal {
 void bark() {
 System.out.println("Barking...");
 }
}

class Cat extends Animal {
 void meow() {
 System.out.println("Meowing...");
 }

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

17

}

class TestInheritance3 {
 public static void main(String args[]) {
 Cat c = new Cat();
 c.meow();
 c.eat();
//c.bark();//C.T.Error
 }
}

OUTPUT

Meowing...

Eating...

Q) Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not supported in

java. Consider a scenario where A, B, and C are three classes. The C class inherits A and B

classes. If A and B classes have the same method and you call it from child class object, there

will be ambiguity to call the method of A or B class.

Since compile-time errors are better than runtime errors, Java renders compile-time error if

you inherit 2 classes. So whether you have same method or different, there will be compile

time error.

Example 9: multiple inheritance (not supported)

class A

{

 void msg(){System.out.println("Hello");}

}

class B{

 void msg() { System.out.println("Welcome"); }

}

class C extends A,B //suppose if it were

{

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

18

 public static void main(String args[]){

 C obj=new C();

 obj.msg(); //Now which msg() method would be invoked?

 }

}

OUTPUT

Compile Time Error

7. Rules of Inheritance in Java

Consider the following rules while inheriting classes.

RULE 1: Multiple Inheritance is NOT permitted in Java

.

Multiple inheritance refers to the process where one child class tries to extend more than one

parent class. In the above illustration, Class A is a parent class for Class B and C, which are

further extended by class D. This is results in Diamond Problem. Why?

Say you have a method show() in both the classes B and C, but with different functionalities.

When Class D extends class B and C, it automatically inherits the characteristics of B and C

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

19

including the method show(). Now, when you try to invoke show() of class B, the compiler will

get confused as to which show() to be invoked (either from class B or class C). Hence it leads to

ambiguity.

For Example:

class Demo1 {

//code here

}

class Demo2 {

//code here

}

class Demo3 extends Demo1, Demo2 {

//code here

}

class Launch {

 public static void main(String args[]) {

//code here

 }

}

In the above code, Demo3 is a child class which is trying to inherit two parent classes Demo1

and Demo2. This is not permitted as it results in a diamond problem and leads to ambiguity.

RULE 2: Cyclic Inheritance is NOT permitted in Java

It is a type of inheritance in which a class extends itself and form a loop itself. Now think if a

class extends itself or in any way, if it forms cycle within the user-defined classes, then is there

any chance of extending the Object class. That is the reason it is not permitted in Java.

For Example:

class Demo1 extends Demo2 {

//code here

}

class Demo2 extends Demo1 {

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

20

//code here

}

In the above code, both the classes are trying to inherit each other’s characters which is not

permitted as it leads to ambiguity

RULE 3: Constructors cannot be inherited in Java

A constructor cannot be inherited, as the subclasses always have a different name.

class A {

 A();

}

class B extends A{

 B();

}

You can do only:

B b = new B(); // and not new A()

Methods, instead, are inherited with “the same name” and can be used. You can

still use constructors from A inside B’s implementation though:

class B extends A{

 B()

 {

 super();

 }

 }

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

21

Assignment #10

Q#1: Write code for the following classes.

Person Class: Animal class has attributes: String name, address and int age. Write setperson()

function to set values and getPerson() to Print attributes. Also write appropriate constructors.

Employee Class: Write another class Employee having attributes department and salary of type

string and double. Write methods setEmployee(), getEmployee() and appropriate constructors

for Employee class.

Student Class: Write a class Student having attributes registration number and GPA of type

string and float. Also write setStudent(), getStudent() methods and required constructors.

Use the concept of inheritance to achieve the above functionality. Write a main() function to

display the information of employee and student.

Note: Call the constructors/methods of parent class in child class where required.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

 Attempt the Assignment after reading the lecture notes, watching the videos lectures

and doing self-learning of the topic from web.

 Submit your assignment via email /Google class room to respective teacher by the

end of this week, dated 11th May 2020 before: 11:59 PM

 Your Assignment should be a single file either pdf or MS Word (handwritten scanned

document) and must follow the naming format, your Name, Reg#, Section, subject

and assignment number, i.e. AliAhmed_2018-Arid-0001-CS2A_OOP_Asgn4

