Northern University, Nowshera

Inheritance

Week # 11 - Lecture 21- 22 {Q

&
S

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

Learning Objectives:

Assignment Solution
Inheritance (recap)
is-a relationship
protected keyword

method overriding

o n 2w NPR

types of inheritance
a. single inheritance
b. multi-level inheritance
c. Hierarchical inheritance

7. Rules of inheritance

1.Assignment Solution

Q#1: Write code for the following classes.

Animal Class: Animal class has attributes: String eats and int no of legs. Write constructors to
set attributes eat and no of legs. Write a function getNoOfLegs() and getEats() to return
required attributes.

Cat Class: Write another class cat having attribute color of type string that inherits animal class.
Write appropriate constructors and a function for getColor() to return color property of cat. Use
the concept of calling constructors of parent class in child class.

Example main () is given below. Complete the code by considering the given main().

public class AnimalInheritanceTest {

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

public static void main () |
Cat cat = new Cat("milk", 4, "black");
System.out.println("Cat eats " + cat.getEats());
System.out.println("Cat has " + cat.getNoOfLegs () + " legs.");
System.out.println("Cat color is " + cat.getColor()):;

Assignment Solution:

class Animal

{

private String eats;
private int noOfLegs;
public Animal()

{
}

public Animal(String e, int no)

{

this.eats=e;
this.noOfLegs=no;

}
public int getNoOfLegs()

{
}
public String getEats()
{

}

return noOflLegs;

return eats;

}

class Cat extends Animal

{

private String color;
public Cat()

{
super();
color=null;
}
public Cat(String e, int no, String col)
{
super(e,no);
this.color=col;
}
public String getColor()
{
return color;
}

3

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

}

class AnimalInheritanceTest {
public static void main(String[] args) {
Cat cat = new Cat("milk", 4, "black");
System.out.println("Cat eats " + cat.getEats());
System.out.println("Cat has " + cat.getNoOfLegs() + " legs.");
System.out.println("Cat color is " + cat.getColor());

2.Inheritance Revision

In below example of inheritance, class Bicycle is a base class, class MountainBike is a derived

class which extends Bicycle class and class Test is a driver class to run program.

Example 1: A Bicycle example

//Java program to 1illustrate the

// concept of 1inheritance

// base class

class Bicycle {
// the Bicycle class has two fields
public int gear;
public int speed;

// the Bicycle class has one constructor
public Bicycle(int gear, int speed) {
this.gear = gear;
this.speed = speed;

// the Bicycle class has three methods
public void applyBrake(int decrement) {
speed -= decrement;

}

public void speedUp(int increment) {
speed += increment;

}

// toString() method to print 1info of Bicycle
public String toString() {
return ("No of gears are " + gear
+ "\n"

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

+ "speed of bicycle is " + speed);

}

// derived class
class MountainBike extends Bicycle {

// the MountainBike subclass adds one more field
public int seatHeight;

// the MountainBike subclass has one constructor
public MountainBike(int gear, int speed,
int startHeight) {
// 1invoking base-class(Bicycle) constructor

super(gear, speed);
seatHeight = startHeight;
}

// the MountainBike subclass adds one more method
public void setHeight(int newValue) {
seatHeight = newValue;

}

// overriding toString() method
// of Bicycle to print more 1info
@0override
public String toString() {
return (super.toString() +
"\nseat height is

+ seatHeight);

}

// driver class
public class Test {
public static void main(String args[]) {

MountainBike mb = new MountainBike(3, 100, 25);
System.out.println(mb.toString());

No of gears are 3

speed of bicycle is 100
seat height is 25
Brake applied

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

No of gears are 3
speed of bicycle is 80
seat height is 25

In above program, when an object of MountainBike class is created, a copy of the all methods
and fields of the superclass acquire memory in this object. That is why, by using the object of
the subclass we can also access the members of a superclass.

Please note that during inheritance only object of subclass is created, not the superclass. For
more, refer Java Object Creation of Inherited Class.

lllustrative image of the program:

int gear
int speed copy of Bicycle methods and
applyBrake() > fields in MountainBike object

speedUp()
toString()

» objects of MountainBike class

int seatHeight

setHeight()
toString()

3.is-a relationship

Inheritance is an is-a relationship. We use inheritance only if an is-a relationship is present
between the two classes. Here are some examples:

6

https://media.geeksforgeeks.org/wp-content/uploads/inheritence1.png

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

= Acarisavehicle.

= Orange is a fruit.

= Asurgeon is a doctor.
= Adogisananimal.

Example 2: is- a relationship

class Animal {

public void eat() {
System.out.println("I can eat");

public void sleep() {
System.out.println("I can sleep");

class Dog extends Animal {
public void bark() {
System.out.println("I can bark");

class Main {
public static void main(String[] args) {

Dog dogl = new Dog();

dogl.eat();
dogl.sleep();

dogl.bark();

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

I can eat

I can sleep
I can bark

Here, we have inherited a subclass Dog from superclass Animal. The Dog class inherits the
methods eat() and sleep() from the Animal class.

Hence, objects of the Dog class can access the members of both the Dog class and
the Animal class.

Animal (superclass)

eat()

Mainclass

sleep()

dogl.eat()

Dog (subclass) dogl.sleepl)
dogi.bark()

4.protected Keyword

We learned about private and public access modifiers in previous lectures.

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

= private members can be accessed only within the class
= public members can be accessed from anywhere

You can also assign methods and fields protected. Protected members are accessible

= from within the class
= within its subclasses

within the same package

Here's a summary from where access modifiers can be accessed.

Class Package subclass World
public Yes Yes Yes Yes
private Yes No No No
protected Yes Yes Yes No

Example 3: protected Keyword

class Animal {
protected String type;
private String color;

public void eat() {

System.out.println("I can eat");

public void sleep() {
System.out.println("I can sleep");

public String getColor(){
return color;

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

public void setColor(String col){
color = col;

class Dog extends Animal {
public void displayInfo(String c){
System.out.println("I am a " + type);
System.out.println("My color is " + c);
}
public void bark() {
System.out.println("I can bark");

class Main {
public static void main(String[] args) {

Dog dogl = new Dog();
dogl.eat();
dogl.sleep();
dogl.bark();

dogl.type = "mammal";
dogl.setColor("black™);
dogl.displayInfo(dogl.getColor());

}
logrpger ...

can eat

can sleep

can bark

am a mammal

My color is black

I
I
I
I

10

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

Here, the type field inside the Animal class is protected. We have accessed this field from
the Main class using

dogl.type = "mammal";

It is possible because both the Animal and Main classes are in the same package (same file).

5.Java Method overriding

From the above examples, we know that objects of a subclass can also access methods of its
super class. What happens if the same method is defined in both the superclass and subclass?

Well, in that case, the method in the subclass overrides the method in the superclass. For
example:

Example 4: Method overriding Example

class Animal {
protected String type = "animal";

public void eat() {

System.out.println("I can eat");

public void sleep() {
System.out.println("I can sleep");

class Dog extends Animal {

public void eat() {
System.out.println("I eat dog food");

public void bark() {

11

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

System.out.println("I can bark");

class Main {
public static void main(String[] args) {

Dog dogl = new Dog();
dogl.eat();
dogl.sleep();
dogl.bark();

}

OUTPUT

I eat dog food
I can sleep
I can bark

= Here, eat() is present in both the superclass Animal and subclass Dog. We created an
object dogl of the subclass Dog.

= When we call eat() using the dogl object, the method inside the Dog is called, and the same
method of the superclass is not called. This is called method overriding.

If we need to call the eat() method of Animal from its subclasses, we use the super keyword.

Example 5: use of Super Keyword

class Dog extends Animal {
public Dog(){

super();
System.out.println("I am a dog");

public void eat() {
super.eat();
System.out.println("I eat dog food");

12

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

public void bark() {
System.out.println("I can bark");

class Main {
public static void main(String[] args) {
Dog dogl = new Dog();

dogl.eat();
dogl.bark();

}

OUTPUT

am an Animal
am a dog

can eat

eat dog food
can bark

H H H H H

Here, we have used the super keyword to call the constructor using super(). Also, we have
called the eat() method of Animal superclass using super.eat().

Note the difference in the use of super while calling constructor and method.

6.Types of inheritance in java

On the basis of class, there can be three types of inheritance in java:

* single,
= multilevel and

= hierarchical.

13

AJ/Handout 21- 22

Object Oriented Programming using Java (ECS-122)

Note: In java programming, multiple and hybrid inheritance is supported through interface

only. We will learn about interfaces later.

Types of Inheritance

There are various types of inheritance as demonstrated below.

Single Inheritance public class A {
Classa | | ...
}
T public class B extends A {
Class B }
Multi Level Inheritance
publicclass A{oeennns }
public class Bextends A{............... }
public class Cextends B{................ }
Hierarchical Inheritance
Class A public class A{c..ccovvn.n. }
/\ public class B extends A {..........cccone. }
Class B Class C public class C extends A {..........c..c.o..co. }
Multiple Inheritance publicclass A{ }
I Class A | I Class B I ,
publicclass B {.........ccccceeen, }

public class C extends A B {

} /! Java does not support mutiple Inheritance

Single Inheritance Example

When a class inherits another class, it is known as a single inheritance. In the example given

below, Dog class inherits the Animal class, so there is the single inheritance.

Example 6: Single inheritance

14

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

class Animal {
void eat() {
System.out.println("Eating...");
}
}

class Dog extends Animal {
void bark() {
System.out.println(Barking...");
}
}

class TestInheritance {
public static void main(String args[]) {
Dog d = new Dog();
d.bark();
d.eat();

}

OUTPUT

Barking. ..
Eating...

Multilevel Inheritance Example

When there is a chain of inheritance, it is known as multilevel inheritance. As you can see in the
example given below, BabyDog class inherits the Dog class which again inherits the Animal
class, so there is a multilevel inheritance.

Example 7: Multilevel inheritance Example

class Animal {
void eat() {
System.out.println("Eating...");
}
}

class Dog extends Animal {
void bark() {
System.out.println("Barking...");

}

15

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

class BabyDog extends Dog {
void weep() {
System.out.println("Weeping...");
}
}

class TestInheritance2 {
public static void main(String args[]) {
BabyDog d = new BabyDog();

d.weep();
d.bark();
d.eat();
}
}
OUTPUT

Weeping...
Barking...
Eating...

Hierarchical Inheritance Example

When two or more classes inherits a single class, it is known as hierarchical inheritance. In the
example given below, Dog and Cat classes inherits the Animal class, so there is hierarchical

inheritance.

Example 8: Hierarchical Inheritance

class Animal {
void eat() {
System.out.println("Eating...");
}
}

class Dog extends Animal {
void bark() {
System.out.println("Barking...");
}
}

class Cat extends Animal {
void meow() {
System.out.println("Meowing...");

}

16

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

}

class TestInheritance3 {
public static void main(String args[]) {
Cat ¢ = new Cat();
c.meow();
c.eat();
//c.bark();//C.T.Error
}
}

OUTPUT

Meowing. ..
Eating...

Q) Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not supported in
java. Consider a scenario where A, B, and C are three classes. The C class inherits A and B
classes. If A and B classes have the same method and you call it from child class object, there
will be ambiguity to call the method of A or B class.

Since compile-time errors are better than runtime errors, Java renders compile-time error if

you inherit 2 classes. So whether you have same method or different, there will be compile
time error.

Example 9: multiple inheritance (not supported)

class A
{
void msg(){System.out.println("Hello");}
}
class B{
void msg() { System.out.println("Welcome"); }
}
class C extends A,B //suppose if it were
{

17

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

public static void main(String args[]){
C obj=new C();
obj.msg(); //Now which msg() method would be invoked?

}

OUTPUT

Compile Time Error

7.Rules of Inheritance in Java

Consider the following rules while inheriting classes.

RULE 1: Multiple Inheritance is NOT permitted in Java

edurekal

Multiple inheritance refers to the process where one child class tries to extend more than one
parent class. In the above illustration, Class A is a parent class for Class B and C, which are
further extended by class D. This is results in Diamond Problem. Why?

Say you have a method show() in both the classes B and C, but with different functionalities.
When Class D extends class B and C, it automatically inherits the characteristics of B and C

18

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

including the method show(). Now, when you try to invoke show() of class B, the compiler will
get confused as to which show() to be invoked (either from class B or class C). Hence it leads to
ambiguity.

For Example:

class Demol {
//code here

}

class Demo2 {
//code here

}

class Demo3 extends Demol, Demo2 {
//code here

}

class Launch {

public static void main(String args[]) {
//code here

}

In the above code, Demo3 is a child class which is trying to inherit two parent classes Demol
and Demo?2. This is not permitted as it results in a diamond problem and leads to ambiguity.

RULE 2: Cyclic Inheritance is NOT permitted in Java

It is a type of inheritance in which a class extends itself and form a loop itself. Now think if a
class extends itself or in any way, if it forms cycle within the user-defined classes, then is there
any chance of extending the Object class. That is the reason it is not permitted in Java.

For Example:

class Demo1l extends Demo?2 {
//code here
}

class Demo2 extends Demol {

19

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

//code here
}

In the above code, both the classes are trying to inherit each other’s characters which is not
permitted as it leads to ambiguity

RULE 3: Constructors cannot be inherited in Java

A constructor cannot be inherited, as the subclasses always have a different name.

class A {
A();
}

class B extends A{
B();
}

You can do only:

B b =new B(); // and not new A()

Methods, instead, are inherited with “the same name” and can be used. You can
still use constructors from A inside B’s implementation though:

class B extends A{
B()
{
super();

}

20

AJ/Handout 21- 22 Object Oriented Programming using Java (ECS-122)

Assignment #10

READ THE FOLLOWING INSTRUCTIONS CAREFULLY:

= Attempt the Assignment after reading the lecture notes, watching the videos lectures
and doing self-learning of the topic from web.

= Submit your assignment via email /Google class room to respective teacher by the
end of this week, dated 11th May 2020 before: 11:59 PM

= Your Assignment should be a single file either pdf or MS Word (handwritten scanned
document) and must follow the naming format, your Name, Reg#, Section, subject
and assignment number, i.e. AliAhmed_2018-Arid-0001-CS2A_OOP_Asgn4

Q#1: Write code for the following classes.

Person Class: Animal class has attributes: String name, address and int age. Write setperson()
function to set values and getPerson() to Print attributes. Also write appropriate constructors.

Employee Class: Write another class Employee having attributes department and salary of type
string and double. Write methods setEmployee(), getEmployee() and appropriate constructors

for Employee class.

Student Class: Write a class Student having attributes registration number and GPA of type
string and float. Also write setStudent(), getStudent() methods and required constructors.

Use the concept of inheritance to achieve the above functionality. Write a main() function to
display the information of employee and student.

Note: Call the constructors/methods of parent class in child class where required.

21

